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We investigate the relativistic dynamics of a time-driven nonlinear system by analyzing the
resonance structure in the relativistic phase space. It is shown that, when relativistic effects become
appreciable, resonances that exist in the nonrelativistic description may be shifted or suppressed and
resonances that are absent in the nonrelativistic description may be induced to appear. When these
relativity-induced resonances overlap, the system exhibits chaotic relativistic motion. Numerical
data that demonstrate such relativistic effects are presented with model systems of the driven Duffing

oscillator and the driven Morse oscillator.

PACS number(s): 05.45.+b

I. INTRODUCTION

The classical chaotic dynamics of a time-driven non-
linear system can conveniently be described using the
concept of resonance. It is well known, in particular,
that the overlap between neighboring resonance zones in-
duced in the system by the driving force signals the onset
of classical chaos [1,2]. For determination of the critical
force amplitude at which chaotic motion begins to occur,
it therefore is important to know the structure of reso-
nances, their locations and widths in particular. Much
progress has been made in the past on ways to accurately
determine the condition for the onset of chaos.

Up to now, much of the discussion of the resonance
overlap and chaos has largely been limited to nonrela-
tivistic systems. It has been known, however, that chaos
can also be exhibited by systems undergoing relativistic
motion [3-9] such as electrons in the free electron laser
and the driven relativistic electron plasma wave, and sig-
nificantly alter the operation of the systems. Perhaps
the simplest system that can exhibit chaos at relativistic
energies is the driven harmonic oscillator. As we have
recently shown [3], when relativistic effects become ap-
preciable, resonances are formed and chaos can be ex-
hibited by the driven harmonic oscillator, although it is
always associated with regular motion in the nonrelativis-
tic regime.

In this paper we investigate the resonance structure of
a driven nonlinear system in the relativistic phase space.
We show, in particular, that when relativistic effects are
fully considered, new resonances that are absent in the
nonrelativistic description may appear in the high energy
region. Just as in the nonrelativistic case, the overlap
between these relativity-induced resonances can serve as
a criterion for the onset of relativistic chaos.

II. RESONANCE ANALYSIS

Let us consider a one-dimensional system driven by a
sinusoidal force of amplitude Fy and frequency w. The
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Hamiltonian for the system can be written as
p2c? + m2ct + V(q) + qFo cos wt. (1)

In the nonrelativistic limit (mc? > pc), the kinetic en-

ergy term becomes mc? + £, yielding the standard non-
relativistic Hamiltonian. We consider the case where the
type of motion shown by the system is oscillatory. For
a given energy FE, the system in the limit Fy — 0 may
then be considered to oscillate between ¢ = a and ¢ = b
(b > a), where a and b are the two roots for g of the
equation

E —mc® =V(q). (2)

The period-n resonance occurs at energy E at which
the frequency w of the driving force equals n times the
frequency © of the oscillatory motion. Here we assume
that the frequency of the oscillatory motion in the pres-
ence of the driving force is given approximately by that
in the limit Fo — 0, which is valid as long as Fj is not
too great. The condition for the period-n resonance can
then be expressed as

_ w _ OI(E)
n—m_ww, (3)

where I = I(F) is the action variable for the system in
the limit Fy — 0, i.e.,

1
I= d
o PPM

b
_ %12 / VIE = V()] — m2cidq. (4)

The action variable depends on energy E both because
the integrand is a function of F and because the limits of
integration, a and b, depend on E. Substitution of Eq.
(4) into Eq. (3) yields

E-V(q)
\/E V(g))?

(5)

— m2ch

473 ©1995 The American Physical Society



474 JUNG-HOON KIM AND HAI-WOONG LEE 52

When energy E is sufficiently low that relativistic ef-
fects are negligible [E — V (q) = mc?], Eq. (5) becomes

wv2m b dq
2m /a VE —mc —V(q)’ (©)

yielding the standard resonance condition in the nonrel-
ativistic regime. It is worth noting that, if the poten-
tial V(g) varies with ¢ more strongly than a harmonic
potential, i.e., if the oscillator is “hard,” the frequency

n =

Q=1/ %(g—) is an increasing function of energy F and
thus a higher period resonance is formed at a lower en-
ergy. In the opposite case where the potential varies more
slowly than a harmonic potential, i.e., when the oscillator
is “soft,” a higher period resonance appears at a higher
energy.

In the ultrarelativistic limit where E — V(q) = pc >
mc?, Eq. (5) becomes

L wb—a) e
sz (=)

We note that the quantity in the bracket on the right-
hand side of Eq. (7) is just the frequency of the oscillatory
motion when the speed of the oscillator is ¢. In normal
situations the amplitude (b — a) of oscillation is an in-
creasing function of energy. Thus, according to Eq. (7),
a higher period resonance is formed at a higher energy,
regardless of whether the potential varies more rapidly
or slowly than a harmonic potential.

It is interesting to note that the sequence of resonances
in the relativistic region that appear in energy space is
opposite to that in the nonrelativistic region, if the poten-
tial varies more rapidly than a harmonic potential, e.g.,
if V(g) « |g|® or ¢*. In such a case, as one moves along
the energy axis from low toward high energy, one en-
counters a series of resonances in the order of decreasing
period in the nonrelativistic region, followed by another
series of resonances in the order of increasing period in
the relativistic region. The latter series of resonances
arises solely from relativistic considerations and thus is
referred to as relativity-induced resonances. The former
exists in both nonrelativistic and relativistic descriptions
and is simply referred to as nonrelativistic resonances.

If the potential varies more slowly than a harmonic
potential, the orders in which nonrelativistic and rela-
tivistic resonances appear are the same. This means
that relativistic considerations should have an effect of
simply shifting the location of each nonrelativistic reso-
nance. There will be no newly generated or suppressed
resonances, and relativistic effects show up in a less dra-
matic way for a soft oscillator.

III. EXAMPLES

As examples to demonstrate the relativistic effects de-
scribed in the previous section, we consider the Duffing

double-well oscillator and the Morse oscillator. The Duff-
ing oscillator at high energies behaves as a “hard” oscilla-
tor, whereas the Morse oscillator is an example of a “soft”
oscillator. One thus expects to see relativity-induced and
suppressed resonances for the case of the Duffing oscil-
lator, while only a shift in the positions of resonances is
expected to occur in the Morse oscillator.

A. Driven Duffing oscillator

Our first example is the Duffing double-well oscillator
driven by a sinusoidal force. The potential is taken to be

Vig) = —3d" + 34* (8)

This potential has a minimum value of ——% at ¢ = £1.
For convenience of our discussion of relativistic effects,
we fix the oscillator mass and the driving frequency to
be m =1 and w = 7, and vary the value of c. The non-
relativistic limit corresponds to ¢ — oo, and relativistic
effects become stronger as one takes a smaller value of c.

The phase-space map of the oscillator can be con-
structed by numerically following the motion governed
by the relativistic Hamilton’s equations

dg b4
dt - /—————mz +p2/62 bl (9)
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FIG. 1. Phase-space maps for the driven Duffing oscillator
with the oscillator mass m = 1 and the driving frequency
w = 7 in a unit system in which the speed of light, ¢ — oc.
The amplitude of the driving force is 0.1 for (a) and 0.01 for

(b).
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TABLE 1. The location (g,p) of one of the fixed points of
each resonance present in Fig. 1, and the corresponding reso-
nance energy E — mc® computed numerically from the (g, p)
values and calculated theoretically based on the resonance
analysis. L and R in the first column refer to resonances
corresponding to motion confined in the left and right wells,
respectively. The speed of light, c, is taken to be ¢ — oo.

E —mc?
n q p Numerical Theoretical
L2 -0.69 0.35 -0.029 -0.031
R2 0.37 0 -0.032 -0.031
5 -1.42 0 0.004 0.007
3 -1.53 0 0.100 0.101
1 -2.91 0 6.82 6.62
%It_) = %q - %qg’ — Fycoswt. (10)

‘We show in Figs. 1-4 phase-space maps for the cases
¢ = oo, 5.5, 0.5, and 0.2, respectively. Plot (a) in each
figure was drawn at the force amplitude Fy = 0.1 and
gives a broad view of high-energy resonances, while plot
(b) drawn at Fo = 0.01 shows a more detailed view of
low-energy resonances not apparent in plot (a). The lo-
cation of the resonances found in each figure is tabulated
in Tables I-IV. The ¢ and p values represent the loca-
tion of one of the fixed points of each resonance, and the
column under “numerical” gives corresponding values of
resonance energy E — mc? computed from the ¢ and p
values.

In the nonrelativistic plot (¢ — o) of Fig. 1(a) the

20

FIG. 2. Same as Fig. 1 except ¢ = 5.5.

TABLE II. Same as Table I except ¢ = 5.5.

E — mc®

n q P Numerical Theoretical
L2 -0.69 0.35 -0.030 -0.032
R2 0.37 0 -0.032 -0.032

5 -1.42 0 0.004 0.007

3 -1.53 0 0.100 0.103

1 -3.50 0 15.64 15.13

1 4.67 0 54.24 53.91

period-1 resonance centered at ¢ = —2.9, p = 0 is clearly
seen, while the period-3 resonance formed at a lower
energy is only barely seen as it lies in the chaotic re-
gion. Higher-period resonances lying at even lower ener-
gies seem to have already been destroyed at Fy = 0.1.
Figure 1(b) drawn at a lower value 0.01 of F;, shows
the period-3 resonance clearly separated from the chaotic
region and the period-5 resonance that was absent in
Fig. 1(a). Apparently at the low value (0.01) of Fy at
which Fig. 1(b) was drawn, the period-5 resonance still
survives. Also shown is a pair of period-2 resonances at
E — mc? = —0.03, which arise from the motion confined
in one of the two wells. There is no period-1 resonance
in the region E — mc? < 0, because the frequency € of
the motion remains less than 1 (it approaches 1 only in

the limit £ — Vo = ——%) and thus can never be equal
tow = 3.

At ¢ = 5.5, we see no significant change in the reso-
nance structure from the one in the nonrelativistic limit,

40
po
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FIG. 3. Same as Fig. 1 except ¢ = 0.5.
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TABLE III. Same as Table I except ¢ = 0.5. TABLE IV. Same as Table I except ¢ = 0.2.
E — mc® E —mc?

n q P Numerical Theoretical n q P Numerical Theoretical
L2 -0.82 0.36 -0.052 -0.054 L2 -0.95 0.26 -0.099 -0.099
R2 0.50 0 -0.055 -0.054 R2 1.21 0 -0.098 -0.099
L3 -0.12 0 -0.004 -0.004 L3 -0.42 0 -0.040 -0.040
R3 1.41 0 -0.003 -0.004 R3 1.35 0 -0.040 -0.040
5 -1.44 0 0.018 0.019 9 -1.42 0 0.003 0.003
5 2.45 0 3.028 3.022 9 1.78 0 0.455 0.453
7 3.49 0 15.44 15.43 11 2.19 0 1.676 1.675

except that, in addition to the period-1 resonance cen-
tered at ¢ & —3.5, p = 0, corresponding to E — mc? &
15.6, there is a new period-1 resonance at ¢ = 4.7, p = 0,
corresponding to a higher energy of E—mc? = 54.2. This
resonance is clearly absent in the nonrelativistic plot of
Fig. 1 and thus represents a resonance induced by rela-
tivity.

At ¢ = 0.5, we see from Fig. 3(a) that two relativity-
induced resonances of period 5 and period 7 are formed.
That these are relativity-induced resonances is clear be-
cause the period-7 resonance lies at a higher energy than
the period-5 resonance, in opposition to the nonrelativis-
tic situation of Fig. 1 where a higher-period resonance
is formed at a lower energy. It should be noted that, at
¢ = 0.5, the energy at which the period-1 or period-3
resonance would be formed is already relativistic. The
period-1 and period-3 nonrelativistic resonances are thus
suppressed by relativity, while at the same time a new
series of resonances starting with that of period 5 are
induced by relativity. The period-5 nonrelativistic reso-
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FIG. 4. Same as Fig. 1 except ¢ = 0.2.

nance can be seen in Fig. 3(b) along with pairs of period-2
and period-3 resonances in the region £ — mc? < 0.

At ¢ = 0.2 we see from Fig. 4(a) that two relativity-
induced resonances of period 9 and period 11 are formed.
At the same time the period-9 nonrelativistic resonance
can barely be seen in Fig. 4(b) as it lies in the chaotic
region. Apparently at ¢ = 0.2 the nonrelativistic res-
onances of period lower than 9 have disappeared and
are replaced by a series of relativity-induced resonances
starting with that of period 9. Also seen in Fig. 4(b) are
pairs of period-2 and period-3 resonances in the region
E —-mc? < 0.

The complex resonance structure shown in Figs. 1-
4 and tabulated in Tables I- IV can best be explained
using the analysis described in Sec. II. The resonance
condition for the case of the Duffing oscillator can be
written as (considering the case where E — mc? > 0)

OI(E)

OF

_Zw/b E+% -4
mc Jo \/(E+5143—981)2—m204

dq, (11)

where the amplitude b = b(E) of the oscillatory motion
is by Eq. (2)

E —mc® = —1p® + 1p*. (12)

In Figs. 5-8 we plot w%(g—) computed by numerically
integrating Eq. (11) as a function of (E — mc?) for the
cases ¢ = oo, 5.5, 0.5, and 0.2, respectively. Plot (a) in
each figure is drawn for the energy range 0 < E — mc? <
100 (for Figs. 5 and 6) or 0 < E — mc? < 10 (for Figs. 7
and 8), while plot (b) shows a more detailed view of the
low energy region including the negative energy region,
i.e.,, -t < E —mc® < 0.2. The energy at which the
period-n resonance is formed can be found by reading
the value of E corresponding to the crossing point of the
horizontal line of constant n with the curve in the figures.

In the nonrelativistic limit (¢ = o0), we see from
Fig. 5(a) that, for E — mc? > 0, w%gz is a mono-
tonically decreasing function of energy, approaching 0 as
E — mc? — co. Thus, as we move from E — mc? = 0 to
E —mc? — oo, we encounter resonances of decreasing pe-
riod all the way down to n = 1. Figure 5(b) indicates that
this sequence of resonances is reversed for E — mc? < 0.
Thus, a higher-period resonance is formed at a higher en-
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FIG. 5. w%(z? vs (E —mc?) for the driven Duffing oscilla-
tor with the oscillator mass m = 1 and the driving frequency
w = 7 in a unit system in which the speed of light, ¢ — oo.
The energy range plotted is 0 < E — mc® < 100 for (a) and

-1 < E—mc® <0.2 for (b).
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FIG. 6. Same as Fig. 5 except ¢ = 5.5.
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FIG. 7. Same as Fig. 5 except ¢ = 0.5, and the energy
range plotted is 0 < E — mc? < 10 for (a).

ergy for E — mc? < 0. We should also note that w%gl

approaches 3 as E — mc? — —%, the minimum value of

the potential.

Comparing Figs. 6(a), 7(a), and 8(a) with Fig. 5(a),
the most significant change that occurs in the plot when
relativistic effects are taken into account is that the func-
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FIG. 8. Same as Fig. 7 except ¢ = 0.2.
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tion w%gl does not monotonically decrease with en-
ergy. Instead, it is seen to reverse its direction at some
point and begin increasing with energy apparently to oo
as E — mc® — oo. This means that, in addition to the
resonances that already exist in the nonrelativistic de-
scription, there appears a new series of high-energy res-
onances when relativistic effects are properly taken into
account. Comparison of Figs. 6(b), 7(b), and 8(b) with
Fig. 5(b) indicates, however, that relativistic effects do
not cause any such qualitative change in the plot for the
region E —mc? < 0. Here, only the locations of the reso-
nances are shifted when relativistic effects are considered.

Although not apparent in Fig. 6(a), the equation n =
w%%ﬂ for ¢ = 5.5 has a pair of roots for all values of pos-
itive integers including n = 1. Thus, at ¢ = 5.5, there ex-
ist two complete series of resonances, nonrelativistic and
relativity induced, provided that the amplitude of the
driving force is sufficiently small that the resonances are
not destroyed. The function w%}?, however, increases
with energy very slowly in the region where low-period
relativity-induced resonances are formed. As a result, the
period-3 relativity-induced resonance appears at a rela-
tively high energy which is outside the range of Fig. 2(a).
This is why period-3 and higher-period relativity-induced
resonances are not seen in Fig. 2(a).

Figures 7(a) and 8(a) indicate that, as relativistic ef-
fects become stronger, the curve of ngEEZ vs (E — mc?)
reverses its direction sooner and the minimum value of
the curve gets greater. As a result, the curve of Fig. 7(a)
has no root for odd integers 3 and 1, and that of Fig. 8(a)
has no root for odd integers smaller than 9. This explains
why at ¢ = 0.5 the period-1 and period-3 nonrelativis-
tic resonances disappear and a new series of relativity-
induced resonances starting with the period-5 resonance
appear. At ¢ = 0.2 relativistic effects are even stronger,
and the four lowest-period nonrelativistic resonances are
suppressed and the relativity-induced resonances start
with one of period 9. Figures 7(a) and 8(a) show that
one can simultaneously observe resonances suppressed by
relativity and induced by relativity in the same system.

In Tables I-IV we list the theoretical values E —mc? of
the resonance energy obtained by solving Eq. (11) based
on the analysis presented in this section for all resonances
observed in Figs. 1-4. The agreement with the numerical
values is good in all cases.

B. Driven Morse oscillator

As a second example, we consider a one-dimensional
Morse oscillator driven by a sinusoidal force. The poten-
tial is given by

V(g) = D[t — e~@=%)2, (13)

The initial energy of the oscillator is assumed to be suffi-
ciently below D so that its motion is basically of oscilla-
tory type. Hamilton’s equations of motion now take the
form

da _ __ P (14)

dt /m2 + pZ/CZ’

_;di_lt) _2Dae‘a(q_qe)[1 — e_a(q_q‘)] — FO cos wt. (15)

Il
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FIG. 9. Phase-space maps for the driven Morse oscillator
with the oscillator mass m = 1, potential parameters D = 1,
a =1, ge = 1, and the driving frequency w = 0.9 x v/2 and
the amplitude of the driving force Fo = 0.02. The speed of
light, ¢, is oo for (a), 5.5 for (b), 0.5 for (c), and 0.2 for (d).
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TABLE V. The location (g, p) of one of the fixed points of
each resonance present in Fig. 9, and the corresponding reso-
nance energy E — mc® computed numerically from the (g,p)
values and calculated theoretically based on the resonance
analysis.

E —mc?
c n q p Numerical Theoretical
oo 1 1.612 0 0.2095 0.1900
2 2.613 0.566 0.8013 0.7975
5.5 1 1.605 0 0.2060 0.1864
2 2.593 0.574 0.7990 0.7950
0.5 1 1.296 0 0.0656 0.0557
2 1.538 1.115 0.5341 0.5331
3 3.157 0 0.7820 0.7795
0.2 1 1.133 0 0.0155 0.0117
2 1.110 0.962 0.1674 0.1674
3 1.913 0 0.3584 0.3572
4 0.928 2.839 0.5348 0.5348

A theoretical analysis of nonlinear resonances and their
overlap in the driven nonrelativistic Morse oscillator has
been given earlier [10]. We are interested in any mod-
ifications that are necessary when the motion becomes
relativistic.

Phase-space maps obtained by numerically integrat-
ing Egs. (14) and (15) are shown in Fig. 9 for the cases
c = oo, 5.5, 0.5, and 0.2, with the parameters m = 1,
D=1,a=1,¢ =1, w = 0.9 x v/2, and F, = 0.02.
We note that at energy slightly above zero the natural
frequency of the oscillator is 1/2Da?/m = /2. Since the
frequency of the driving force is taken to be w = 0.9 x /2,
resonances of all integer periods including n = 1 should
be formed. The nonrelativistic plot of Fig. 9(a) shows
the period-1 resonance centered at ¢ = 1.6, p = 0, cor-
responding to E — mc? = 0.21, and the period-2 reso-
nance centered at ¢ = 2.6, p = +0.57, corresponding to
E—mc? = 0.80. Since the Morse potential is not symmet-
ric, resonances of even periods appear along with those
of odd periods. At ¢ = 5.5 we see from Fig. 9(b) that no

E-mc?

FIG. 10. w% vs (E — mc?) for the driven Morse os-
cillator with the oscillator mass m = 1, potential parameters
D=1,a=1,q. =1, and the driving frequency w = 0.9 x /2.
The speed of light c is taken to be oo (or 5.5) for (a), 0.5 for
(b), and 0.2 for (c).

significant change has occurred from the nonrelativistic
structure. Figure 9(c) indicates, however, that at ¢ = 0.5
resonances are seen to be shifted toward lower energies,
with the period-1 resonance formed at E — mc? = 0.066
and the period-2 resonance at E — mc? = 0.53. In addi-
tion, resonance of period 3 appears at E—mc? = 0.78. At
¢ = 0.2 we see from Fig. 9(d) that resonances are shifted
further toward lower energies and resonances of periods 1
— 5 can be clearly identified. In order to help identifying
the resonances we tabulate in Table V locations of the
resonances found in Fig. 9.

As in the case of the Duffing oscillator, the locations of
the resonances can be estimated by using Eq. (5). For the
present case of the Morse oscillator one of course needs
to substitute Eq. (13) into Eq. (5). The right-hand side

of Eq. (3), w%gz, so computed is plotted as a function
of energy F in Fig. 10 for the cases ¢ = oo, 5.5, 0.5,
and 0.2. We note that the curve for ¢ = 5.5 is indistin-
guishable from the curve for ¢ = co with the scale drawn
here. It should be obvious, however, that, as relativistic
effects become stronger, w%gz increases faster with re-
spect to energy, and consequently resonances are formed
at lower energies, consistent with the observation made
from the phase-space maps. The theoretical values of the
resonance energy estimated based on Fig. 10 are listed in
Table V alongside the numerical values computed based
on the phase-space maps. The agreement between the
two sets is good in all cases.

40 T T T T T T T

-40 |
40 .
L (b)

-40 1 1 1 1 1 1 1

FIG. 11. Phase-space maps for the driven Duffing oscillator
with the oscillator mass m = 1 and the driving frequency
w = Z in a unit system in which the speed of light ¢ = 0.2.
The amplitude of the driving force is 3.75 for (a) and 7.5 for

(b).
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C. Resonance overlap and chaos

It should be noted that in general relativity-induced
resonances are further apart from each other than the
standard nonrelativistic resonances are from each other.
All the relativity-induced resonances shown in Figs. 2-4
and Fig. 9 are thus well defined and free from overlap.
Nevertheless, these resonances do overlap at a sufficiently
high force amplitude and chaotic behavior can be ob-
served in the relativistic phase space.

An illustration is provided in Figs. 11(a) and 11(b),
where phase-space maps of our Duffing oscillator are
shown for ¢ = 0.2 at two different values of the force
amplitude, Fy = 3.75 and Fy = 7.5, respectively. It is
clear that at Fo = 7.5 the two relativity-induced reso-
nances, the period-11 and period-13 resonances, overlap
and the system exhibits chaos in the relativistic phase
space.

IV. SUMMARY

In summary we have shown that resonances that ex-
ist in the nonrelativistic description can be shifted or

suppressed and new resonances that do not exist in the
nonrelativistic description can be generated, when rel-
ativistic effects become appreciable. If the oscillator is
softer than the harmonic oscillator, then only the shift of
resonances can occur. If, however, the oscillator is harder
than the harmonic oscillator, the generation and/or sup-
pression of resonances can take place. The significance
of the newly generated relativistic resonances lies in the
fact that, when the driving force is sufficiently strong that
the overlap between the relativity-induced resonances oc-
cur, chaotic relativistic motion is exhibited by the sys-
tem. The work reported here can be useful, for example,
in studies of the dynamics of driven relativistic electron
plasma waves [7] which can be modeled by driven non-
linear oscillators.
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